Lignans from the Roots of Saururus chinensis

Chang-Seob Seo, ${ }^{\dagger, \perp}$ Ming-Shan Zheng,,${ }^{\dagger, \perp}$ Mi-Hee Woo, ${ }^{\dagger}$ Chong-Soon Lee, ${ }^{\S}$ Sung-Ho Lee, ${ }^{\dagger}$ Byeong-Seon Jeong, ${ }^{\dagger}$ Hyeun-Wook Chang, ${ }^{\dagger}$ Yurngdong Jahng, ${ }^{\dagger}$ Eung-Seok Lee, ${ }^{\dagger}$ and Jong-Keun Son* ${ }^{*}{ }^{\dagger}$
College of Pharmacy, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Korea, 712-749, College of Pharmacy, Catholic University of Daegu, 330 Geumnak 1-ri, Gyeongsan, Korea, 712-702, and Department of Biochemistry, College of Science, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Korea, 712-749

Received May 2, 2008

Four new lignans, saucerneol F (1), saucerneol G (2), saucerneol H (3), and saucerneol I (4), were isolated from the EtOAc extract of the roots of Saururus chinensis, together with one known compound, saucerneol D (5). The structures of compounds $\mathbf{1 - 4}$ were elucidated by spectroscopic analysis. These compounds showed cytotoxic activities against HT-29, MCF-7, and HepG-2 cell lines.

Saururus chinensis (Saururaceae) is a perennial herbaceous plant that has been used in the treatment of various diseases such as edema, jaundice, gonorrhea, fever, and inflammation in Korean folk medicine. ${ }^{1}$ Studies of the genus Saururus have shown the presence of lignans, ${ }^{2-5}$ aristolactams, flavonoids, anthraquinones, and fruanoditerpenes, ${ }^{10-13}$ some of which exhibited neuroleptic, ${ }^{6}$ hepatoprotective, ${ }^{7}$ antifeedant, ${ }^{8}$ and antioxidant activities. ${ }^{9}$ Previously, we reported the isolation of protective agents against sepsis in the animal model from this plant. ${ }^{14}$ In this paper, we report the isolation and structural determination of five lignans, as well as their cytotoxic activity against human colon adenocarcinoma (HT29), human breast adenocarcinoma (MCF-7), and human liver hepatoblastoma (HepG-2) cell lines.

The MeOH extract of the roots of S. chinensis was partitioned by n-hexane, EtOAc, BuOH , and $\mathrm{H}_{2} \mathrm{O}$ successively. The EtOAc extract was chromatographed on silica gel, Sephadex LH-20, and reversed-phase columns to afford five lignans $(\mathbf{1}-\mathbf{5})$. Compound $\mathbf{5}$ was identified as the known compound saucerneol D by comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data and the specific rotation value. ${ }^{15}$ Compound $\mathbf{1}$ was obtained as an amorphous, brown powder, with a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{8}$ determined by HRFABMS (m / z found $543.2000[\mathrm{M}+\mathrm{Na}]^{+}$; calcd 543.1995). The UV and IR spectra of 1 revealed the presence of hydroxy ($3468 \mathrm{~cm}^{-1}$) and oxygenated phenyl groups (234 and $284 \mathrm{~nm}, 1505 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ were similar to those of $\mathbf{5}$, but lacked the signals of two methoxy groups of $\mathbf{5}$ and, instead, showed the signal of one additional methylenedioxy group ($\delta_{\mathrm{H}} 5.964,2 \mathrm{H}, \delta_{\mathrm{C}}$ 101.2). Slight differences of chemical shifts at C-1", C-2", C-3", $\mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$, and $\mathrm{C}-6^{\prime \prime}$ were found in the $0.05-3 \mathrm{ppm}$ range, respectively, in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ from those of $\mathbf{5}$. DEPT, HMQC, HMBC, and NOESY spectra of $\mathbf{1}$ established the one-dimensional structure (Figure 1). The specific rotation of $\mathbf{1}$ $\left\{[\alpha]^{25}{ }_{\mathrm{D}}-60.6\left(c \quad 0.2, \mathrm{CHCl}_{3}\right)\right\}$ exhibited the same sign as that of $\mathbf{5}\left\{[\alpha]^{25}{ }_{\mathrm{D}}-88.1\left(c\right.\right.$ 1.2, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The relative configuration of $\mathbf{1}$ could be deduced by comparison with literature data for related lignans (Supporting Information). ${ }^{15-29}$ From the above evidence, 1 was determineded as threo-1-(benzo[$d][1,3]$ dioxol- $5-\mathrm{yl})$-2-[4$\{(2 \alpha, 3 \alpha, 4 \beta, 5 \beta)$-5-(benzo $[d][1,3]$ dioxol- 5 -yl)-3,4-dimethyltetrahy-drofuran-2-yl\}-2-methoxyphenoxy]propan-1-ol and named saucerneol F .

The molecular formula of 2 was found to be $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$ by HRFABMS (m / z found $357.1335[\mathrm{M}+\mathrm{H}]^{+}$; calcd 357.1338). The

[^0]

Figure 1. Key HMBC correlations of compounds 1-4.
UV spectrum showed maxima at 229, 276, and 306 nm , indicating an aromatic phenolic ketone moiety in $\mathbf{2}$. The IR spectrum of $\mathbf{2}$ revealed the presence of hydroxy ($3424 \mathrm{~cm}^{-1}$) and conjugated ketone groups ($1658 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited two distinct sec-methyls (H-9' and H-9), two methines (H-8' and H-8), benzylic methylene signals ($\mathrm{H}-7 \mathrm{~b}^{\prime}$ and $\mathrm{H}-7 \mathrm{a}^{\prime}$), two methylenedioxy groups, and five aromatic protons (H-2, H-5, H-6, H-3', and H-6'). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed two separate sets of aromatic carbon atoms, one due to a 3,4-methylenedioxy moiety, the other due to a 2^{\prime}-hydroxy- $4^{\prime}, 5^{\prime}$-methylenedioxyphenyl unit. In the HMBC spectrum of 2 , long-range correlations of C-7 with H-2, H-6, H-8, and H-9 were observed (Figure 1). In the NOESY spectrum of 2, $\mathrm{H}-9^{\prime}$ showed a correlation with $6^{\prime}-\mathrm{H}$ but not with $\mathrm{H}-3^{\prime}$. On the basis of these data, $\mathbf{2}$ was determined as 1 -(benzo $[d][1,3]$ dioxol- 5 -yl)-4-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-2,3-dimethylbutan-1-one and named saucerneol G.

The molecular formula of $\mathbf{3}$ was found to be $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$ by HREIMS (m / z found $340.1316\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; calcd 340.1311). The IR and UV spectra of $\mathbf{3}$ revealed the presence of hydroxy (3424 cm^{-1}) and phenolic groups ($1504 \mathrm{~cm}^{-1}, 231$ and 290 nm). The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of two methyl doublets (H-9 and $\mathrm{H}-9^{\prime}$), two methine groups ($\mathrm{H}-8^{\prime}$ and $\mathrm{H}-8$), one benzylic methylene ($\mathrm{H}-7 \mathrm{~b}^{\prime}$ and $\mathrm{H}-7 \mathrm{a}^{\prime}$), one benzylic methine group substituted by oxygen (H-7), two methylenedioxy groups, and five aromatic protons (H-2, H-5, H-6, H-3', and H-6'). The $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum indicated coupling among $\mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9, \mathrm{H}-7^{\prime}$, $\mathrm{H}-8^{\prime}$, and $\mathrm{H}-9$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed two separate

$3 \mathrm{R}=\mathrm{OH}(7 S, 8 R, 8 . S)$
3a R=OAc (7R, $\left.8 R, 8^{\prime} S\right)$
6a $\mathrm{R}=\mathrm{H} \quad\left(7 S, 8 S, 8^{\prime} R\right)$

4
sets of aromatic carbon atoms, one due to a 3,4-methylenedioxy moiety, the other due to a 2^{\prime}-hydroxy- $4^{\prime}, 5^{\prime}$-methylenedioxyphenyl unit. In the NOESY spectrum of $\mathbf{3}, \mathrm{H}-9^{\prime}$ showed a correlation with $6^{\prime}-\mathrm{H}$ but not with $\mathrm{H}-3^{\prime}$. From the HMBC spectrum of $\mathbf{3}$, the onedimensional structure of $\mathbf{3}$ was determined to be the 2^{\prime}-hydroxy derivative of the reported compound 6 (Figure 1). ${ }^{30}$ The absolute configuration at C-7 of $\mathbf{3}$ was established by Mosher ester methodology. ${ }^{31-33}$ The differences of chemical shift values obtained by subtracting (R)-MTPA ester from (S)-MTPA ester $\left[\Delta \delta_{\mathrm{H}}\left(\delta_{S}-\right.\right.$ $\left.\left.\delta_{R}\right)\right]$ are shown in Table 1, and the negative values of $\Delta \delta_{\mathrm{H}}\left(\delta_{S}-\right.$ δ_{R}) at $\mathrm{H}-8,9,8^{\prime}$, and 9^{\prime} suggested a $7 S$ configuration in compound 3. To determine the configurations at $\mathrm{C}-8$ and $\mathrm{C}-8^{\prime}, \mathbf{3}$ was converted to an aryltetralin type compound (3a) with acetyl chloride by the reported reaction, in which inversion of the configuration at C-7 of $\mathbf{6}$ to that of $\mathbf{6 a}$ was shown. ${ }^{30}$ The pattern of cyclization of 3a was confirmed by a 1D-NOE experiment, which demonstrated correlations of acetyl protons to both $3^{\prime}-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$. The observed coupling constants, $J_{7,8}=9.2 \mathrm{~Hz}$ and $J_{7^{\prime}, 8^{\prime}}=10.9 \mathrm{~Hz}$, for 3a indicated all-axial orientations of $\mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-7^{\prime}$, and $\mathrm{H}-8^{\prime}$ and confirmed the all-trans arrangement of the two methyl groups and the pendant phenyl group with all pseudo-equatorial positions. On the basis of this evidence, the structure of $\mathbf{3}$ was proposed to be 6-\{($2 S, 3 R, 4 S$)-4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxy-2,3dimethylbutyl $\}$ benzo $[d][1,3]$ dioxol-5-ol, and $\mathbf{3}$ was named saucerneol H.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ showed signals of only 10 protons and 10 carbons, and the high-resolution mass spectrum confirmed its molecular formula as $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$, which indicated the symmetric feature of this compound. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ suggested the presence of two 3,4-methylenedioxy phenyl units and an $8,8^{\prime}$-dimethyl-7,7'-diol-type skeleton. To determine the absolute configuration of C-7, Mosher ester derivatives ($\mathbf{4}_{R}$ and $\mathbf{4}_{S}$) of $\mathbf{4}$ were prepared, and ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{4}_{R}$ and $\boldsymbol{4}_{S}$ were also assigned on the basis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY spectra (Table 2). The negative values of $\Delta \delta_{\mathrm{H}}\left(\delta_{S}-\delta_{R}\right)$ at $\mathrm{H}-9,7^{\prime}, 8^{\prime}$, and 9^{\prime} suggested a $7 S$ configuration for compound 4 . To determine the configurations at $\mathrm{C}-8$ and $\mathrm{C}-8^{\prime}, 4$ was converted to a tetrahydrofuran-type compound (4a) by treatment with acetyl chloride. ${ }^{30}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 4a were in excellent accordance with those of $(-)$ -

Table 1. Characteristic ${ }^{1} \mathrm{H}$ NMR Data of Mosher Esters of $\mathbf{3}$ for Determination of Absolute Configuration

	position				
	7				
8	9	8^{\prime}	9^{\prime}		
$\mathbf{3}_{S}\left(\delta_{S}\right)$	5.49	1.82	0.30	1.68	0.55
$\mathbf{3}_{R}\left(\delta_{R}\right)$	5.46	1.91	0.42	2.02	0.63
$\Delta \delta\left(\delta_{S}-\delta_{R}\right)$	S	-0.09	-0.12	-0.34	-0.08

Table 2. Characteristic ${ }^{1} \mathrm{H}$ NMR Data of Mosher Esters of 4 for Determination of Absolute Configuration

	position				
	7				
9	7^{\prime}	8^{\prime}	9^{\prime}		
$\mathbf{4}_{S}\left(\delta_{S}\right)$	5.57	0.68	4.26	2.14	0.57
$\mathbf{4}_{R}\left(\delta_{R}\right)$	5.60	0.63	4.15	1.76	0.46
$\Delta \delta\left(\delta_{S}-\delta_{R}\right)$	S	-0.05	-0.11	-0.38	-0.11

galbacin, which possesses a $7 S, 8 S, 8^{\prime} S, 7^{\prime} S$ configuration, and the specific rotation value of $\mathbf{4 a}$ showed the same sign as $(-)$-galbacin, $[\alpha]^{22}{ }_{\mathrm{D}}-41.5\left(c 0.026, \mathrm{CHCl}_{3}\right)\left\{[\alpha]_{\mathrm{D}}-11.7\right\} .{ }^{4,28,34}$ On the bais of this evidence, $\mathbf{4}$ was suggested to be $(1 S, 2 S, 3 S, 4 S)$-1,4-di(benzo[d] [1,3]dioxol-5-yl)-2,3-dimethylbutane-1,4-diol and named saucerneol I.

Compounds $\mathbf{1 - 5}$ and the positive control, camptothecin, exhibited cytotoxic activities against the HT-29 cell line (IC_{50} values of $10,55,53,21,13$, and $2 \mu \mathrm{M}$, respectively), the hepG- 2 cell line (IC_{50} values of $11,62,61,>100,16$, and $0.3 \mu \mathrm{M}$, respectively), and the MCF-7 cell line (IC_{50} values of $>100,64,72,>100,>100$, and $10 \mu \mathrm{M}$, respectively).

Experimental Section

General Experimental Procedures. Melting points were measured using the capillary melting point apparatus, Electrothermal 9100 (Essex, UK), and are uncorrected. Optical rotations were measured using a JASCO DIP-1000 (Tokyo, Japan) automatic digital polarimeter. FTIR spectra were recorded on a JASCO FT-IR 300E (Tokyo, Japan) spectrophotometer and UV spectra on a JASCO V-550 (Tokyo, Japan) spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (250,600 , and 900 MHz) and ${ }^{13} \mathrm{C}$ NMR (62.9 and 150 MHz) were recorded on a Bruker AMX250, DMX600, and Bruker Biospin Avancell 900 spectrometer (Karlsruhe, Germany). Samples were dissolved in CDCl_{3} and reported in ppm downfield from TMS. HIFABMS and HIEIMS were obtained on a JEOL JMS700 spectrometer (JEOL, Japan). The stationary phases used for column chromatography (silica gel $60,70-230$ and $230-400$ mesh, and Lichroprep RP-18 gel, 40-63 $\mu \mathrm{m}$, Merck) and TLC plates (silica gel $60 \mathrm{~F}_{254}$ and RP-18 $\mathrm{F}_{254 \mathrm{~s},} 0.25 \mathrm{~mm}$, Merck) were purchased from Merck KGaA (Darmstadt, Germany). Spots were detected under UV radiation and by spraying with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, followed by heating. $(R)-(-)-\alpha-$ Methoxy- α-(trifluoromethyl)phenylacetyl chloride $[(R)$-MTPA-Cl] and (S)-(+)- α-methoxy- α-(trifluoromethyl)phenylacetyl chloride [(S)-MTPACl] were purchased from Aldrich (St. Louis, MO; purity 99.0\%).

Plant Material. The roots of S. chinensis were purchased in February 2003 from a folk medicine market, "Yak-ryong-si", in Daegu, Republic of Korea. These materials were confirmed taxonomically by Professor Gi-Hwan Bae, Chungnam National University, Daejeon, Korea. A voucher specimen (YNSC2004) has been deposited at the College of Pharmacy, Yeungnam University.

Extraction and Isolation. The dried roots of S. chinensis (9.7 kg) were extracted with $70 \% \mathrm{MeOH}(\times 3)$ by refluxing for 24 h , and the MeOH solution was then evaporated to dryness (1.0 kg). The MeOH extract was suspended in $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~L})$, and the resulting $\mathrm{H}_{2} \mathrm{O}$ layer was successively partitioned with n-hexane, EtOAc, and BuOH (each $1.4 \mathrm{~L} \times 3$). The EtOAc extracts (130 g) were loaded onto a silica gel column ($12 \times 100 \mathrm{~cm}, 70-230 \mathrm{mesh}$) and eluted by a stepwise gradient of n-hexane-EtOAc (100:0 $\rightarrow 0: 100$) and then EtOAc-MeOH (100:0 $\rightarrow 0: 100$). The eluates (500 mL in each flask) were combined into 39 fractions (SCE1-SCE39) on the basis of silica gel TLC. Fractions 25 $(1.3 \mathrm{~g})$ and $28(1.4 \mathrm{~g})$ were chromatographed on a reversed-phase column ($4 \times 50 \mathrm{~cm}$, LiChroprep RP-18), using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (gradient elution, from 50:50 to $100 \% \mathrm{MeOH}$), to give $\mathbf{1}(230 \mathrm{mg})$ and 4 (140 $\mathrm{mg})$, respectively. Fractions $20(1.3 \mathrm{~g})$ and $26(1.0 \mathrm{~g})$ were subjected
to reversed-phase column chromatography ($4 \times 50 \mathrm{~cm}$, LiChroprep RP-18), using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (gradient elution, from $40: 60$ to 100% $\mathrm{MeOH})$, to give $2(70 \mathrm{mg})$ and $3(40 \mathrm{mg})$, respectively. Fraction 29 $(500 \mathrm{mg})$ was chromatographed on a Sephadex LH-20 column $(4.5 \times$ 80 cm , Sephadex LH-20) eluted with $\mathrm{MeOH}(3.0 \mathrm{~L})$ to give 5 (400 mg).

Saucerneol F (1): amorphous, brown powder (EtOAc-MeOH); mp $59-61{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-60.6\left(c 0.2, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 234$ (4.36), 284 (4.12) nm; IR (KBr) $\nu_{\max } 3468,2963,2891,1505,1443$, $1249,1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 900 \mathrm{MHz}\right) \delta 6.98(1 \mathrm{H}, \mathrm{d}, J=8.1$ Hz, H-5'), 6.92 (1 H , br s, H-2"), 6.89 (1 H , br s, H-2'), $6.86(1 \mathrm{H}, \mathrm{d}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 6.82(1 \mathrm{H}$, br s, H-2), $6.82(1 \mathrm{H}$, br d, $J=6.7 \mathrm{~Hz}$, H-6'), $6.80(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-5), 6.78\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right)$, $6.76(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-6), 5.964\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}-3,4\right), 5.955$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}-3^{\prime \prime}, 4^{\prime \prime}\right), 5.43\left(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J$ $=6.9 \mathrm{~Hz}, \mathrm{H}-7), 4.62\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 4.10(1 \mathrm{H}, \mathrm{dq}, J=8.1$, 6.3 Hz, H-8"), $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.28(1 \mathrm{H}, \mathrm{ddq}, J=13.6,6.8,6.8$ $\left.\mathrm{Hz}, \mathrm{H}-8^{\prime}\right), 2.26(1 \mathrm{H}, \mathrm{ddq}, J=13.6,6.8,6.8 \mathrm{~Hz}, \mathrm{H}-8), 1.16(3 \mathrm{H}, \mathrm{d}, J$ $\left.=6.2 \mathrm{~Hz}, \mathrm{H}-9^{\prime \prime}\right), 0.71(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-9), 0.70(3 \mathrm{H}, \mathrm{d}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{H}-9^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.8\left(\mathrm{C}, \mathrm{C}-3^{\prime}\right), 147.9(\mathrm{C}$, C-3"), 147.7 (C, C-4"), 147.6 (C, C-3), 146.6 (C, C-4), 146.5 (C, C-4'), 136.9 (C, C-1'), 135.6 (C, C-1), 134.2 (C, C-1"), 121.3 (CH, C-6"), 119.5 (CH, C-6), 119.1 (CH, C-5'), 118.9 (CH, C-6'), 110.3 (CH, C-2'), $108.3\left(\mathrm{CH}, \mathrm{C}-5^{\prime \prime}\right), 108.0(\mathrm{CH}, \mathrm{C}-5), 107.8\left(\mathrm{CH}, \mathrm{C}-2^{\prime \prime}\right), 107.1(\mathrm{CH}$, C-2), $101.2\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}-3,4\right), 101.1\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}-3^{\prime \prime}, 4^{\prime \prime}\right), 84.2(\mathrm{CH}$, C-8", $83.9(\mathrm{CH}, \mathrm{C}-7), 83.7\left(\mathrm{CH}, \mathrm{C}-7^{\prime}\right), 78.6\left(\mathrm{CH}, \mathrm{C}-7^{\prime \prime}\right), 56.0\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{OCH}_{3}\right), 44.1(\mathrm{CH}, \mathrm{C}-8), 44.0\left(\mathrm{CH}, \mathrm{C}-8^{\prime}\right), 17.1\left(\mathrm{CH}_{3}, \mathrm{C}-9^{\prime \prime}\right), 14.9\left(\mathrm{CH}_{3}\right.$, C-9, C-9'); HRFABMS m/z $543.2000[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}, 543.1995$).

Saucerneol G (2): amorphous, brown powder $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$; mp $41-43{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}+13\left(c 0.59, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 229$ (4.14), 276 (3.69), 306 (3.88) nm; IR (KBr) $v_{\max } 3424,2954,2903$, $1658,1504,1442,1251,1173,1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right)$ $\delta 7.59(1 \mathrm{H}, \mathrm{dd}, J=8.21 .5 \mathrm{~Hz}, \mathrm{H}-6), 7.45(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-2)$, $6.86(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-5), 6.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 6.48\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime}\right)$, $6.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.60$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}^{\prime}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right), 2.00(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.13.5,10.1 \mathrm{~Hz}, \mathrm{H}^{2}-7 \mathrm{~b}^{\prime}\right), 1.21(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-9), 0.97(3 \mathrm{H}, \mathrm{d}, J=$ 6.4 Hz, H-9'); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) \delta 204.7(\mathrm{C}, \mathrm{C}-7), 152.2$ (C, C-3), 149.9 (CH, C-5'), 148.3 (C, C-4), 146.7 (C, C-4'), 140.3 (C, C-1'), 130.6 (C, C-1), 125.1 (CH, C-6), 117.4 (C, C-2'), 110.1 (CH , C-6'), $108.5(\mathrm{CH}, \mathrm{C}-2), 108.0(\mathrm{CH}, \mathrm{C}-5), 102.0\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}\right), 100.8$ $\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}\right), 98.6\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 46.3(\mathrm{CH}, \mathrm{C}-8), 37.7\left(\mathrm{CH}_{2}, \mathrm{C}-7{ }^{\prime}\right)$, $35.6\left(\mathrm{CH}, \mathrm{C}-8^{\prime}\right), 16.5\left(\mathrm{CH}_{3}, \mathrm{C}-9\right), 16.2\left(\mathrm{CH}_{3}, \mathrm{C}-9^{\prime}\right)$; HRFABMS m / z $357.1335[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{6}, 357.1338$).

Saucerneol H (3): sticky solid $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}-51.9(c$ 0.35, $\left.\mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 231$ (4.10), 290 (3.93) nm; IR (KBr) $\nu_{\max } 3424,2954,2903,1658,1504,1442,1251,1173,1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.72(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5, \mathrm{H}-6)$, $6.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime}\right), 6.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.84(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.27(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-7), 2.81(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.8$, $\left.\mathrm{H}-7 \mathrm{a}^{\prime}\right), 2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2} 7 \mathrm{~b}^{\prime}\right), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right), 1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, $0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}-9{ }^{\prime}\right), 0.56(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) \delta 148.7\left(\mathrm{C}, \mathrm{C}-5^{\prime}\right), 147.8$ (C, C-3), 147.1 (C, C-4), 146.2 (C, C-4'), 140.7 (C, C-1'), 138.0 (C, C-1), 120.6 (CH, C-6), 119.0 (C, C-2'), 110.3 (CH, C-6'), $108.0(\mathrm{CH}, \mathrm{C}-5), 107.0(\mathrm{CH}, \mathrm{C}-2)$, $101.0\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}\right), 100.8\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}\right), 98.4\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 79.5(\mathrm{CH}$, C-7), $43.1(\mathrm{CH}, \mathrm{C}-8), 38.0\left(\mathrm{CH}_{2}, \mathrm{C}-7^{\prime}\right), 34.0\left(\mathrm{CH}, \mathrm{C}-8^{\prime}\right), 14.6\left(\mathrm{CH}_{3}\right.$, C-9'), $12.0\left(\mathrm{CH}_{3}, \mathrm{C}-9\right)$; HREIMS $m / z 340.1316\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}, 340.1311$).
(7S,8R,9R)-9-(Benzo[d][1,3]dioxol-5-yl)-7,8-dimethyl-6,7,8,9-tetrahydronaphtho $[2,1-d][1,3]$ dioxol-5-yl acetate (3a): $[\alpha]^{28}{ }_{D}+5.8(c$ $\left.0.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 6.70(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, $\mathrm{H}-5), 6.61(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{H}-6), 6.55(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}$, $\mathrm{H}-2), 6.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 5.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}-3,4\right), 5.68$ and 5.58 (each $\left.1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}-4^{\prime}, 5^{\prime}\right), 3.44(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-7), 2.63$ $\left(1 \mathrm{H}, \mathrm{dd}, J=15.9,3.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}^{\prime}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCOOCH}_{3}\right), 2.17(1 \mathrm{H}$, dd, $\left.J=15.9,10.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}^{\prime}\right), 1.43$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-8^{\prime}$), 1.03 ($3 \mathrm{H}, \mathrm{d}$, $\left.J=6.0 \mathrm{~Hz}, \mathrm{H}-9^{\prime}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $62.9 \mathrm{MHz}) \delta 169.7\left(\mathrm{C}, \mathrm{CH}_{3}-\mathrm{CO}_{2} \mathrm{Ar}\right), 147.2\left(\mathrm{C}, \mathrm{C}-4^{\prime}\right), 145.5\left(\mathrm{C}, \mathrm{C}-5^{\prime}\right)$, 145.3 (C, C-3), 143.4 (C, C-4), 141.3 (C, C-1), 139.5 (C, C-6'), 123.2 (C, C-1'), 122.8 (C, C-2'), $122.0(\mathrm{CH}, \mathrm{C}-6), 108.9(\mathrm{CH}, \mathrm{C}-2), 107.5$ $(\mathrm{CH}, \mathrm{C}-5), 101.6\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 101.1\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O}-4^{\prime}, 5^{\prime}\right), 100.7\left(\mathrm{CH}_{2}\right.$,
$\left.\mathrm{OCH}_{2} \mathrm{O}-3,4\right), 50.1$ (CH, C-7), 44.8 (CH, C-8), 34.6 (CH, C-8'), 32.9 $\left(\mathrm{CH}_{2}, \mathrm{C}-7^{\prime}\right), 20.9\left(\mathrm{CH}_{3}, \operatorname{ArCOOCH} 3\right), 19.9\left(\mathrm{CH}_{3}, \mathrm{C}-9^{\prime}\right), 16.8\left(\mathrm{CH}_{3}\right.$, C-9).

Saucerneol I (4): white powder $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$; $\mathrm{mp} 138-142{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}-70.3\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 235$ (4.07), 287 (4.00) nm; IR (KBr) $\nu_{\max } 3333,2968,2919,1503,1488,1443$, $1248,1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 6.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,2^{\prime}\right)$, 6.77 ($\left.2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-6, \mathrm{H}-6^{\prime}\right), 6.73(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-5$, $\left.\mathrm{H}-5^{\prime}\right), 5.92\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O} \times 2\right), 4.26\left(2 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-7, \mathrm{H}^{\prime} 7^{\prime}\right)$, 2.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-8^{\prime}$), $0.56\left(6 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-9, \mathrm{H}-9^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) \delta 147.8$ (C, C-3, C-3'), 147.0 (C, C-4, C-4'), 138.4 (C, C-1, C-1'), 120.5 (CH, C-6, C-6'), 107.9 (CH, C-5, C-5'), $107.0\left(\mathrm{CH}, \mathrm{C}-2, \mathrm{C}-2^{\prime}\right), 100.9\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{O} \times 2\right), 77.1\left(\mathrm{CH}, \mathrm{C}-7, \mathrm{C}-7^{\prime}\right)$, $39.1\left(\mathrm{CH}, \mathrm{C}-8, \mathrm{C}-8^{\prime}\right)$, $10.4\left(\mathrm{CH}_{3}, \mathrm{C}-9, \mathrm{C}-9^{\prime}\right)$; HREIMS m/z. 358.1414 $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}, 358.1416$).
(-)-Galbacin (4a): $[\alpha]^{25}{ }_{\mathrm{D}}-41.5\left(c 0.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}) \delta 6.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2, \mathrm{H}-2^{\prime}\right), 6.82(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-6$, H-6'), $6.76\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right), 5.92\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O} \times 2\right)$, 4.59 ($2 \mathrm{H}, \mathrm{d}, ~ J=8.9 \mathrm{~Hz}, \mathrm{H}-7, \mathrm{H}^{\prime} 7^{\prime}$), 1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-8^{\prime}$), 1.01 $\left(6 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{H}-9, \mathrm{H}-9{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) \delta 147.7$ (C, C-3, C-3'), 146.9 (C, C-4, C-4'), 136.3 (C, C-1, C-1'), 119.7 (CH, C-6, C-6'), $107.9\left(\mathrm{CH}, \mathrm{C}-5, \mathrm{C}-5^{\prime}\right), 106.6\left(\mathrm{CH}, \mathrm{C}-2, \mathrm{C}-2^{\prime}\right), 100.9\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{O} \times 2\right), 88.3\left(\mathrm{CH}, \mathrm{C}-7, \mathrm{C}-7^{\prime}\right), 51.0\left(\mathrm{CH}, \mathrm{C}-8, \mathrm{C}-8^{\prime}\right), 13.8\left(\mathrm{CH}_{3}\right.$, C-9, C-9').

Preparation of (S) - and (R)-MTPA Esters of 3 and 4. Mosher's esters were prepared according to the reported method. ${ }^{31-33}$ To compound $3(3 \mathrm{mg})$ in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added sequentially 0.2 mL of anhydrous pyridine, 0.5 mg of 4 -(dimethylamino)pyridine, and 12.5 mg of $(R)-(-)-\alpha$-methoxy- α-(trifluoromethyl)phenylacetyl chloride [(R)-MPTA-Cl]. The mixture was left at room temperature overnight and checked by TLC to determine if the reaction was completed. After addition of 1 mL of n-hexane, the reaction mixture was passed through a column $(6 \times 0.6 \mathrm{~cm}$, silica gel, $230-400$ mesh, 9385$)$ with n-hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2)$. The eluate was dried in vacuo to give the (S)-MTPA ester of $\mathbf{3}$. Using (S)-MTPA-Cl, the (R)-MTPA ester of $\mathbf{3}$ was prepared. The same procedure was repeated with $4(5 \mathrm{mg})$ to give the (S) - and (R)-MTPA esters of 4.

Conversion of 3 and 4 to 3 a and 4a. Compounds $3(6 \mathrm{mg})$ and 4 (5 mg) were each dissolved in acetyl chloride (3 drops). The solutions were kept at room temperature for 2 h and, after the addition of $\mathrm{H}_{2} \mathrm{O}$, neutralized with aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated. The residue that dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1-2 \mathrm{~mL})$ was passed through a column (6 $\times 0.6 \mathrm{~cm}$, silica gel, $230-400$ mesh, 9385) with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase. The eluates were dried in vacuo to give compounds $\mathbf{3 a}(3 \mathrm{mg})$ and $4 \mathbf{a}$ (2 mg).

Cytotoxicity Bioassays. A tetrazolium-based colorimetric assay (MTT assay) was used to determine the cytotoxicities toward human colon adenocarcinoma (HT-29), human breast adenocarcinoma (MCF7), and human liver hepatoblastoma (HepG-2) cell lines. ${ }^{35}$

Acknowledgment. This work was supported by a Korean Research Foundation Grant (KRF-2006-005-J01101).

Supporting Information Available: NMR data of 1, 2, 3, 4, 3a, and 4a. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Chung, B. S.; Shin, M. G. Dictionary of Korean Folk Medicine; Young Lim Sa: Seoul, 1990; p 813.
(2) Rao, K. V.; Alvarez, F. M. J. Nat. Prod. 1982, 45, 393-397.
(3) Rao, K. V.; Alvarez, F. M. J. Nat. Prod. 1983, 48, 592-597.
(4) Rao, K. V.; Rao, N. S. P. J. Nat. Prod. 1990, 53, 212-215.
(5) Chattopadhyay, S. K.; Rao, K. V. Tetrahedron 1987, 43, 669-678.
(6) Rao, K. V.; Puri, V. N.; Diwan, P. K.; Alvarez, F. M. Pharmacol. Res. Commun. 1987, 19, 629-638.
(7) Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2000, 63, 1019-1021.
(8) Kubanek, J.; Fenical, W.; Hay, M. E.; Brown, P. J.; Lindquist, N. Phytochemistry 2000, 54, 281-287.
(9) Rajbhandari, I.; Takamatsu, S.; Nagle, D. G. J. Nat. Prod. 2001, 64, 693-695.
(10) Rao, K. V.; Reddy, G. C. S. J. Nat. Prod. 1990, 53, 309-312.
(11) Wang, E. C.; Shih, M. H.; Liu, M. C.; Chen, M. T.; Lee, G. H. Heterocycles 1996, 43, 969-975.
(12) Sung, S. H.; Kwon, S. H.; Cho, N. J.; Kim, Y. C. Phytother. Res. 1997, 11, 500-503.
(13) Hwang, B. Y.; Lee, J. H.; Nam, J. B.; Kim, H. S.; Hong, Y. S.; Lee, J. J. J. Nat. Prod. 2002, 65, 616-617.
(14) Seo, C. S.; Lee, Y. K.; Kim, Y. J.; Jung, J. S.; Jahng, Y. D.; Chang, H. W.; Song, D. K.; Son, J. K. Biol. Pharm. Bull. 2008, 31, 523-526.
(15) Hwang, B. Y.; Lee, J. H.; Nam, J. B.; Hong, Y. S.; Lee, J. J. Phytochemstry 2003, 64, 765-771.
(16) Fonseca, S. F.; Barata, L. E. S.; Ruveda, E. A. Can. J. Chem. 1979, 441-443.
(17) Rimando, A. M.; Pezzuto, J. M.; Farnsworth, N. R.; Santisuk, T.; Reutrakul, V.; Kawanishi, K. J. Nat. Prod. 1994, 57, 896-904.
(18) Rao, K. V.; Oruganty, R. S. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 3121-3134.
(19) Tofern, B.; Jenett-Siems, K.; Siems, K.; Jakupovic, J.; Eich, E. Phytochemistry 2000, 53, 119-128.
(20) Kraft, C.; Jenett-Siems, K.; Köhler, J.; Tofen-Reblin, B.; Siems, K.; Bienzle, U.; Eich, E. Phytochemistry 2002, 60, 167-173.
(21) Yue, J. M.; Chen, Y. Z.; Hua, S. M.; Cheng, J. L.; Cui, Y. X. Phytochemistry 1989, 28, 1774-1776.
(22) Prasad, A. K.; Tyagi, O. D.; Wengel, J.; Boll, P. M.; Olsen, C. E.; Bisht, K. S.; Singh, A.; Sarangi, A.; Kumar, R.; Jain, S. C.; Parmar, V. S. Phytochemistry 1995, 39, 655-658.
(23) Sarkanen, K. V.; Wallis, A. F. A. J. Heterocycl. Chem. 1973, 10, 10251027.
(24) Baraga, A. C. H.; Zacchino, S.; Badano, H.; Sierra, M. G.; Ruveda, E. A. Phytochemistry 1984, 23, 2025-2028.
(25) Zacchino, S. A.; Badano, H. J. Nat. Prod. 1985, 48, 830-833.
(26) Zacchino, S. A.; Badano, H. J. Nat. Prod. 1988, 51, 1261-1264.
(27) Zacchino, S. A. J. Nat. Prod. 1994, 57, 446-448.
(28) Barata, L. E.; Baker, P. M.; Gottlieb, O. R.; Ruveda, E. A. Phytochemistry 1978, 17, 783-786.
(29) Hattori, M.; Hada, S.; Kawata, Y.; Tezuka, Y.; Kikuchi, T.; Namba, T. Chem. Pharm. Bull. 1987, 35, 3315-3322.
(30) Fernandes, A. M. A. P.; Barata, L. E. S.; Ferri, P. H. Phytochemistry 1994, 36, 533-534.
(31) Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 95, 512-519.
(32) Rieser, M. J.; Hui, Y. H.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.; Mclaughlin, J. L.; Hanson, P. R.; Zhuang, A.; Hoye, T. R. J. Am. Chem. Soc. 1992, 144, 10203-10213.
(33) Rieser, M. J.; Fang, X. P.; erson, E.; Miesbauer, L. R.; Smith, D. L.; Mclaughlin, J. L. Helv. Chim. Acta 1994, 76, 2433-2444.
(34) Urzua, A.; Freyer, A. J.; Shamma, M. Phytochemistry 1987, 26, 15091511.
(35) Rubinstein, L. V.; Shoemaker, R. H.; Paul, K. D.; Simon, R. M.; Tosini, S.; Skehan, P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Nat. Cancer Inst. 1990, 82, 1113-1118.
NP8002723

[^0]: * To whom correspondence should be addressed. Tel: 82-53-810-2817. Fax: 82-53-810-4654. E-mail: jkson@yu.ac.kr.
 ${ }^{\dagger}$ College of Pharmacy, Yeungnam University.
 * Catholic University of Daegu.
 ${ }^{\S}$ Department of Biochemistry, Yeungnam University.
 ${ }^{\perp}$ These authors contributed equally to this work.

